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Fluctuation effects on microphase separation in random 
copolymers 
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Hmard University, Department of Chemistry, 12 Oxford Street, Cambridge MA 02138, USA 

Received 27 May 1994 

Ahstract. We study random copolymers consisting of two kinds of monomers. with mtmction 
between similar kmds. The mean-field analysis of this system indicares a continuous phase 
transition into a phase with periodic microdomain structure It is shown lhat the inverse of the 
renormalired propagator has a minimum at non-zero wavenumbers. Consequenlly, there is an 
mmamalously large contribution of fluctuations that m&e the disordered phase locally stable at 
every finite temperature. However, below a cenin temperature, the ordered phxe is shown to 
be locally stable and a we& first-order tnnsition is possible. similar to the w e d  crystallization 
theory developed by Bmov&ii. 

1. Introduction 

Copolymers with attraction between similar kinds of monomers have received a lot of 
attention in the previous decade [14] .  Their most important applications arise from 
the remarkable changes in their mechanical properties when they undergo a microphase 
separation transition. Regular block copolymers, with well defined architectures along the 
sequence, constitute the most important class of such materials. The study of these systems 
shows that they can undergo a temperature-induced microphase separation transition into 
a variety of phases with a periodic domain stmcture and different crystalline symmetries. 
The scale of the domains is proportional to the coil size of a block defined by the sequence 
architecture and, therefore, does not depend on temperature. 

A different class of copolymeric materials are the random-or statistical-copolymers 
where each monomer along the sequence can be, randomly, of one kind or the other [5,6] or 
there is a large distribution of block lengths [7-91. The important feature of these systems 
is the quenched disorder along the sequence. The theoretical study on the level of the mean 
field [6] showed that they also undergo a temperature-induced phase separation transition. 
It was shown that, near the transition point, the domain size depends very strongly on 
temperature. The transition from the disordered to the ordered phase has been predicted to 
be third order. 

In all these cases, the finite scale of domains is a natural consequence of the polymeric 
effect that prevents macrophase separation, as would happen in a gas of disconnected A 
and B species with attraction between similar kinds. As a result of this finite scale, the 
inverse of the renormalized propagator has a minimum at finite momenta and the effect of 
fluctuations is anomalously large. 

In the case of  regular block copolymers 11, IO], where the phase separation scale does not 
depend on temperature, the inverse propagator of the effective Hamiltonian in the Fourier 
representation has a minimum at ]E* f 0. The mean-field theory for this Hamiltonian 
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[ I ]  predicts a continuous second-order transition. Then, the Hamiltonian of the regular 
block copolymer can be mapped onto the Haniiltonian for the Brazovskii theory of weak 
crystallization [ I  1-13]. 

In his seminal work [ l l ] ,  Brazovskii showed that i n  systems where the inverse 
propagator has an absolute minimum at I C .  # 0, a continuous transition of the Landau 
type is impossible. In particular, he showed, on the level of the Hartree approximation, 
that fluctuations stabilize the disordered phase and prevent the renormalized mass from 
becoming zero or negative. For Hamiltonians of this kind, however, he showed that, in the 
range where the Hartree approximation is valid, a phase transition is possible because the 
ordered phase becomes first locally stable and eventually globally stable, so a first-order 
transition occurs. 

The analogy between the Brazovskii theory and regular block copolymers was pointed 
out by Fredrickson and Helfand [14], who calculated the corrections to the phase diagram 
of Leibler. In a later study, Dobrynin and Erukhimovich [ 1.51 proposed a variational method 
to modify the Brazovskii theory in order to take into account the explicit momentum 
dependence of the forth-order vertex, reproducing the results of 1141. 

Interesting predictions of the fluctuation effects based on the Brazovskii theory were 
also made by taking into account higher harmonics of the phase separation order parameter, 
regarding the behaviour of some exotic structures observed with hexagonal cylinders 
arranged in lamellar layers 1161. 

The explicit analogy between the Brazovskii theory and the theory of regular block 
copolymers is due to the fact that the phase separation scale in the latter does not 
depend on temperature and is fixed by the well defined architecture of the sequence. In 
random copolymers, the strong temperature dependence of the phase separation scale creates 
qualitative differences in the fluctuation treatment of the problem, as will be seen in the 
present work. 

A first effort to describe the microphase separation transition in  random copolymers 
beyond the mean field was made in [17]. It was shown that, although the inverse of the 
bare propagator has a minimum at zero momentum, the renormalized propogator has a 
minimum at a finite momentum. In that case, it is known from Brazovskii theory that 
fluctuations make the disordered phase locally stable. 

In all the previous mean-field studies [&SI of random copolymers, certain terms of the 
Hamiltonian were ignored because they were shown to have a very weak effect within the 
limits of the mean field. The consecutive fluctuation studies [ 151 also ignored these terms. 
For this Hamiltonian, it was shown recently [IS, 191 that the one-loop calculation is exact 
and higher-loop diagrams do not contribute to the Dyson equation in the thermodynamic 
limit, It was also found that, in the framework of the examined Hamiltonian, fluctuations 
destroy the stability of the ordered phase and the microphase separation transition disappears. 

In the present work, we examine the complete effective Hamiltonian for random 
copolymers with strong short-range correlations of monomer kinds along the sequence, 
i.e. with a wide distribution of block lengths. We show that the previously omitted terms 
play an important role in restoring the phase transition. This result is in agreement with the 
results obtained by an investigation of a qualitatively similar Hamiltonian with a variational 
approach [20,21]. 

Due to the presence of these extra terms, the ordered phase becomes stable at some 
temperature and the system can undergo a weak first-order transition to a phase with periodic 
microdomain structure, The period of the domains and the amplitude of the separation below 
the transition temperature are the same as those predicted by the mean field. 

A M Gutin et ai 
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2. The model and the mean-field theory 

The random two-letter copolymer is described by a mlcroscoplc Hamiltonian that takes into 
account the self-interactions between monomers as 

where the conformation of the polymer is described by the coordinates of its monomers 
[9-j] and U ( r )  is a short-range potential. The binary interaction virial coefficient is given 
by WI 

(2.2) B . .  ti - - ~ ~ i ~ , + + c i ( ~ t + + o j ) + c ~ .  

The sequence of monomers is described by a quenched set of random values (q) with 
equal probabilities for the two types of monomer; 0; = 1 if monomer i is of type A and 
U, = -1 if i t  is of type B .  When the interactions between similar monomers are equal 
(Ban = B B B ) .  then cI = 0. The composite FIory parameter x = (BAA t B B B ) / ~  - Baa 
will be negative in the case of interest, where similar monomers attract each other. The 
constant c2 corresponds to an overall attraction in the two-body term. This overall attraction, 
in combination with a three-body repulsion term which is not explicitly introduced in the 
Hamiltonian, are known to lead the polymer to a compact state with constant density 1231. 
This well studied effect is purely homopolymeric and will not be considered in the present 
study where only heteropolymeric effects are taken into account. 

In this model. we consider that a monomer of one kind is followed, with high probability, 
by a monomer of the same kind. Correspondingly, the correlations between kinds of 
monomers decay as 

J - e-li-ll/l (2.3) 

where 1 > 1 represents the average block length with monomers of one kind. 

the position of consecutive monomers at an average distance of unity: 
The polymeric effect is explicitly introduced through the elastic term [23] that constrains 

In this system, attraction between similar types of monomers generates an energetic 
preference for phase separation. In the absence of polymeric bonds, a complete phase 
separation takes place. In the presence of polymeric bonds, we can only expect a microphase 
separation. This phase separation is described by the order parameter [5] 

which corresponds to the difference pa - ps between the densities of the two types of 
monomers. In  the present study, we refer to the case where there is an equal amount of A 
and B types, which is usually referred to as composition f = f. 

The effective Hamiltonian is of the form [6,7]  
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where V is the volume of the system and the Fourier transform is defined as m(k)  = 
( I  /A) J dRm(R)e ik’R.  

The coefficient Al of the first vertex is inversely proportional to the square of the 
average block length 1 ,  i.e. AI - 1/12. This vertex corresponds to the loss of entropy due 
to polymeric bonds that connect different blocks with each other. We can see immediately 
that, due to this term, long wavelength modes become unfavourable. On the other hand, 
very short wavelength modes are unfavourable due to the surface tension contribution in 
the second-order term. 

The A2 vertex has the usual form of the vertex in the king model effective Hamiltonian. 
This term is due to the discrete values &I  of the sequence [q]. In an annealed system, 
as for example in a binary alloy where the quenched polymeric bonds are absent, this is 
the entropic fourth-order term that provides stability of the ordered phase with macroscopic 
phase separation into two domains. In the case of random copolymers. the coefficient of this 
vertex is A2 - 111, i.e. it is of order unity per typical block in units of ksT. The momentum 
dependence of this term can be neglected for scales larger than the coil size of the average 
block, which is of order l ’ /* .  This is the term omitted from all previous mean-field studies. 
It is seen immediately that this term becomes comparable with the other vertex A l / k 2  only 
at scales k - l/l’/’ and, therefore, it was argued that i t  can be omitted for larger domain 
scales predicted by the mean field. Then, it was shown [6 ]  that the mean-field solution can 
be taken in the form 

where A is Kronecker’s delta. This solution corresponds to the lamellar phase. The mean- 
field amplitude mo and the frequency ko can be determined by minimization of (2.6) to 
be 

mo=O for T > O  

where the effect from 12 is negligible because ko is very small near the transition. 
Thus, the mean-field theory predicts a continuous phase transition at r = 0. This 

transition is found to be third order. The effective Hamiltonian which contains only the 
heteropolymeric vertex is equivalent to a Gaussian sequence model, i.e. a quenched sequence 
of Gaussian variables [U; ]  instead of discrete variables hl. This approximation does not 
change the mean-field results but is crucial for the fluctuation analysis that will be performed 
in the following sections. We will show in section 4 that this is the only term that provides 
the stability of the order phase. We will refer to the effective Hamiltonian without the A2 

vertex as the Gaussian sequence approximation. 

3. The Gaussian sequence approximation 

In this section, we will consider the effective Hamiltonian in the Gaussian sequence 
approximation, describing the microphase separation transition in random copolymers, as 
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Figure 1. One-loop and two-loop Feynman diagram contribution to the self-energy. 

This is the Hamiltonian that has been used in all previous mean-field studies. Shortly 
after the derivation of this Hamiltonian, it was observed [I71 that a renormalization of the 
Green function on the one-loop level changes its form qualitatively. The one-loop Dyson 
equation for the Green function is 

By substituting even the bare Green function into the integral of (3.2) for r > 0, the 
renormalized Green function in three dimensions is 

G - ' ( k )  = k2 + r +  - 211fr  
r112 + k (3.3) 

with k = Ikl. We see immediately that there is a minimum of G-l (k )  at some k, # 0. It 
was, therefore, proposed that the form of the renormalized Green function can be described 
by the form used in the weak crystallization theory [ i l l  

G - ] ( k )  = C ( k  - k*)' + r. (3.4) 

This approximation is good for r << k:. By substitution of (3.4) into (3.2), it is found that 

According to the first relation in (3.5), the renormalized m a s  r cannot become zero except 
for r = -CO, which corresponds to T = 0. Therefore, the disordered phase never loses 
stability, as in Brazovskii theory. This result is quite general and is due to the fact that the 
integral corresponding to the one loop correction 

(3.6) 

is divergent as r + 0. On the basis of this evidence, it was assumed that this system 
will have a first-order transition o f  Brazovskii type. A more careful study, however, was 
performed i n  [18,19] and is presented briefly in the rest of  this section. 

Consider the diagrams that contribute to a perturbation expansion. The contribution of 
the one-loop diagram shown in figure l(a) to the Dyson equation is of order 
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The two-loop diagram shown in figure l(b) is of order 

and should be neglected in  the thermodynamic limit. We can easily see that all higher-loop 
diagrams do not contribute for the same reasons. 

From the above remarks, we conclude that the one-loop Dyson equation given in (3.2) 
is exact and the lack of continuous transition for the effective Hamiltonian (3.1) is a general 
result that does not depend on the smallness of the parameter A l .  

On the premises discussed above, we calculate here the stability of the ordered phase. 
If we assume that the symmetry is broken as described by (2 .7) ,  we need to write down the 
free-energy functional '7iH(mo, k& $1. The order parameter is 

m ( k )  = [ ;;p for k = i h  
for k # zktrco. 

(3.9) 

Fluctuations of the mode k = ko are of order 1 and are ignored, compared to the mean 
field m ( k )  - a, Fluctuations of other modes are denoted by $. Then, the free-energy 
functional becomes 

(3.10) 

where 7t(mo. ko} is the value of Hamiltonian ( 3 . 1 )  if we substitute the mean-field solution 
in the form given by (2.7). 

The classical field values mo, ko are found from the equation of state given by the 
thermodynamic relations 

The first equation reads 

where ( $ ( k ) $ ( - k ) )  = G ( k ) .  The Dyson equation for the ordered phase for k # rC, is 

(3 .13)  

This equation is exact since higher-loop diagrams are subdominant in V due to the peculiar 
symmetry of our vertex. 

Then, by comparison of equations (3.12) and (3.13). we see that C ( k )  depends only on 
the modulus k and 

G-'(ko)mo = 0. (3.14) 

The minimum value of G - ' ( k )  is positive since, if G-I = 0, the integral of (3.6) diverges. 
Then G-'(ko) > 0 and, therefore, according to equation (3.14), mo = 0. We see that we 
cannot have a stable solution with mo # 0 and ko # 0 for Hamiltonian (3.1). 
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4. The complete Hamiltonian 

4.1. The Ginsburg criteria 

In the previous section, we saw that, although on the level of the mean field the results 
should not be affected by the omission of the second vertex A?, the fluctuation analysis 
using only the heteropolymeric vertex 11 results in the absence of any kind of microphase 
separation transition. This result is expectable even from mean-field estimates if we notice 
the following. The inverse propagator for the ordered phase calculated on the level of the 
mean field in the absence of hz is 

By substitution of the mean-field values (2.Q we see that the inverse propagator has a 
minimum at ko. Then, the bare mass in the ordered phase is given by 

2 221 * 
ko’ 

r = r + ko + -mo. (4.2) 

By substitution of the mean-field values (2.8) for mo and ko, this gives r = 0. The 
consideration of the complete Hamiltonian (2.6) is then necessary. If A2 is included, we see 
that the bare mass becomes positive and the ordered phase is stable independently of the 
relative smallness of A2 compared to h l / k i .  It is straightforward to show that the mass for 
the ordered phase on the level of the mean field is 

r - r Z l .  (4.3) 2 r = 8Azm0 or 

We now shift our attention to the effect of fluctuations. The point at which fluctuations 
become important can be estimated by comparing the contribution of the diagram of 
figure 2(a) to the r(4) function with the bare-vertex value. The vertex A, f k: gives a larger 
contribution than the equivalent of A2 at a given temperature and, therefore, the Ginsburg 
criterion for the validity of the mean field should be calculated by the diagram of figure Z(a) 
for the X I  vertex. 

Figure 2. ( a t ( b )  One-loop diagram contribution to the four-point function r\” for vertex A I  
(c)-(d) One-Loop d i n g ”  contributron to the four-point function rr’ for vertex Az.  
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We first consider the disordered phase. In this case, the Ginsburg criterion is given by 

(4.4) 

This is satisfied for any kl , kz if 

For the ordered phase, the Ginsburg criterion is equivalent to h ~ / r ~ / ~  << 1 which, owing 
to equation (4.3). becomes 

1 
-r>>m. (4.6) 

On the other hand, we can see that the mean-field value for mo becomes of order one at 
r - 1 / 1  and the Landau expansion breaks down. Therefore, the region where the mean 
field is valid for the ordered phase is 

1 1 - << --T << 7. (4.7) 17/6 

Since the mean field is correct in this region, we can conclude that there is a phase transition 
between the disordered phase with ma = 0 and the ordered phase with mo # 0. 

Analogously, fluctuation corrections arising from the hz vertex can be neglected for 
Azki/r3/2 << 1 .  This gives the Ginsburg criterion for this vertex in the ordered phase 

1 
-i>'- (4.8) 

which i s  smaller than the Ginsburg value of -r for hl ,  as anticipated above. 

4.2. The effect ofpuctiiarions 

According to the derived criteria, there is a region of temperatures 

1 1 
15/' 17/6 
-<<-r<- 

where the Dyson equation in the ordered phase should be described by 

(4.91 

because the one-loop contribution of the vertex AI is exact according to the analysis given 
in section 3. The equation obtained from the variation of the free-energy expression with 
respect to the amplitude mo is 
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By comparison of equations (4.10) and (4.11), we see that there is a solution for the field 
amplitude 

(4.12) 

From the minimization of the free energy with respect to the parameter k i ,  we obtain 

(4.13) 

This equation coincides with the equation for the minimum k, of the inverse propagator 
by differentiation of the Dyson equation (4.10) for the ordered phase and k, coincides with 
ko. By taking G - ' ( k )  = (k - ko)* + r and using Brazovskii's estimate for the integrals, it 
follows from equation (4.10) that 

Substituting equation (4.12) into (4.14), we obtain 

(4.14) 

(4.15) 

Since we are considering scales much larger than the coil size of the average block, we 
always have hl/(k&) >> I and the Dyson equation for the ordered phase has the form 

(4.16) 

We notice that the second term on the right-hand side of (4.16) is small compared to -r 
for -r >> 1/1514. The same condition is also valid in order to neglect the contribution of 
the last term in  (4.13). Consequently, the mean-field results for r ,  mo and ko will hold true 
in the region (4.9). 

As we approach -r - 1 / 1 5 1 4 ,  the three terms of (4.16) become of the same order. It 
is easy to show that for -r > r, and, correspondingly, for r > rc,  this equation has real 
solutions for r where 

1 
1514 

rc - - (4.17) and 
1 

r, - - 
1312 

and the solution with r growing as --t corresponds to the minimum of the thermodynamic 
potential. Correspondingly, for -7 e zc, equation (4.16) does not have a solution. This 
means that in that region the ordered phase is locally unstable. 

We can easily see from the first equation in (3.5) that the disordered phase does not 
lose local stability at --5 - I/l5l4. Then there must be a first-order phase transition, as in 
the Brazovskii theory of weak crystallization. It can be shown rigorously with Brazovskii's 
method [ I l l  that, at the temperature of the order predicted by (4.17), the ordered phase 
becomes globally stable. The jump in the amplitude, according to (4.12), is given by 

1 
k i  - - 

p i 4  ' 
and 

1 
mo - - 

1114 
(4.18) 



7966 A M Curin CI a1 

We note that the order of the transition temperature coincides with the Cinsburg 
temperature for vertex A 2  predicted by equation (4.8). However, one-loop corrections to the 
Dyson equation due to this vertex need not be considered because the divergent contribution 
of the A I  vertex is much larger. It is also easy to show that at -r - 1/15/4,  the higher-loop 
terms for A2 do not contribute. 

As explained in section 3, the one-loop c o r d o n  for vertex hl is not an approximation 
but the exact contribution of this vertex to the self-energy. We must also mention that, 
for the renormalization of the four-point function for this vertex, only the channel of 
figure 2(a) contributes to the geometric progression for the ladder diagrams since the channel 
of figure 2(b) must be neglected according to the arguments of section 3. In contrast, for 
vertex h2. Brazovskii showed that there are two channels contributing to the renormalization 
of Ff), as shown in figures 2(c) and (d). and the geometric progression for the renormalized 
four-point function has a special form given by 

(4.19) 

where il - k;/r3/'. It is seen that when h2k;/r3/* > 1. r;) changes sign, which does not 
happen for the four-point function r!". This change of sign can be interpreted as a hint 
for the existence of an inflection in the thermodynamic potential which should exist at the 
temperature where the ordered phase becomes locally stable and below. 

5. Discussion 

We have investigated the effect of thermal fluctuations on the microphase separation 
transition in a melt of random copolymers. We have considered a quenched sequence 
consisting of an equal amount of monomers of two kinds in the thermodynamic limit. The 
model assumes that neighbouring monomers are, with high probability, of the same kind with 
average block length I >> 1 and a wide distribution of block lengths. Our analysis indicates 
that there is a weak first-order phase transition between a disordered and an ordered phase 
with periodic microdomain structure instead of a continuous third-order phase transition 
predicted by the mean field. 

The effective Hamiltonian (2.6) for this system contains two fourth-order vertices with 
completely different forms. The vertex labelled hj is solely due to the polymeric effect 
and prohibits macroscopic phase separation. Vertex h:! which has the usual king model 
form is due to the discrete values 5 1  for the sequence labels (0;). In  the mean field, the 
contribution of the vertex h2 is negligible around the transition point and can be omitted. 
An exact analysis of fluctuations in the absence of vertex hz is possible and shows that the 
disordered phase is always locally stable. At the same time, the ordered phase is locally 
unstable and the phase transition is impossible. Then, the effect of vertex hz has to be taken 
into account. 

For the complete Hamiltonian (2.6), we have shown that the mean-field predictions 

mo - -?I and k i -  -r for 5 < 0 (5.1) 

are correct in the region 
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The weak first-order transition takes place at -r  - l/Z51”, with a jump in the amplitude 

I 
and ko - - (5.3) [5/8 ’ 

1 
/1/4 

Am0 - - 
The longer the average block length I ,  the higher the temperature of transition and the 

smaller the jump in the phase separation amplitude at the point of the weak first-order 
transition. 

In the case of regular block copolymers, the jump in the corresponding Ructuationally- 
induced first-order transition predicted in [I41 is Am0 - 1/l:I6, where l b  is the fixed block 
size of the sequence. We see that the jump predicted for random copolymers is smaller. 
The temperature of transition in regular block copolymers is predicted at -7 - I / p .  
We see that the corresponding shift for random copolymers is also smaller. We notice 
that in random copolymers the domain size near transition k;’ - l5I8 is much larger than 
the corresponding domain size in regular block copolymers k;’ - Z;”. The amplitude of 
the transition at the ordered phase in regular block copolymers mo - ( -db)1 /2  is larger 
than the predicted amplitude of the random copolymer microphase separation at the same 
temperature. 

We also see that, when there are no correlations along the sequence, i.e. Z - 1, the 
predicted transition occurs at a region where the Landau expansion fails. The physics of 
this system is also described by a freezing transition into a phase where a small number of 
conformations are thermodynamically dominant [24] and depend strongly on the flexibility 
of the chain [25]. 

It is also worth noticing that in  the absence of vertex E.2, vertex A, does not have any 
preference for the different Bravais lattices [17]. This degeneracy of the polymeric vertex A, 
is related to the instability of the ordered phase predicted on the basis of only this vertex. All 
the structure dependence comes from vertex A2, Therefore, the analysis of structures other 
than the lamellar is expected to be similar to that of Brazovskii. In the case of composition 
f = 4, there is no cubic term that breaks the inversion symmetry. Although other structures 
are locally stable, the lamellar would retain global stability. For compositions f # i. other 
structures like BCC and hexagonal cylinders may become globally stable and transitions 
between them may be possible. 

In all our calculations, the integral for the one-loop correction of figure ](a) has been 
estimated [ I l l  to be of order hk i / r l / z .  In fact, this estimate is correct at r << k i .  For 
k i  << r << g, the estimate 

k2 dk A ki ’! ( k - k o ) 2 + r  -AD+- (5.4) 

completely describes the behaviour of the integral and its derivatives, where D is a numerical 
constant that depends on the cut-off, as in the king case. The hD term simply shifts 5. 
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